Abstract

ABSTRACTAn inner–outer approximation approach was recently developed to solve single chance constrained optimization (SCCOPT) problems. In this paper, we extend this approach to address joint chance constrained optimization (JCCOPT) problems. Using an inner–outer approximation, two smooth parametric optimization problems are defined whose feasible sets converge to the feasible set of JCCOPT from inside and outside, respectively. Any optimal solution of the inner approximation problem is a priori feasible to the JCCOPT. As the approximation parameter tends to zero, a subsequence of the solutions of the inner and outer problems, respectively, converge asymptotically to an optimal solution of the JCCOPT. As a main result, the continuous differentiability of the probability function of a joint chance constraint is obtained by examining the uniform convergence of the gradients of the parametric approximations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.