Abstract

This work describes two new colorimetric methods for smartphone-based point-of-care nanosensing of toxic Ag+ ions. They were based on the analyte-triggered in situ "off-on" of Tyndall effect (TE) of non-plasmonic colloid or plasmonic metal nanoprobes. The first TE-inspired assay (TEA) focused on the initial analytical application of precipitation reactions where a non-plasmonic AgCl colloid could be formed once mixing the analyte with a NaCl solution. Such AgCl colloid displayed strong visual TE signals after their irradiation by a laser pointer pen, which unexpectedly achieved a detection limit of ~ 400nM. The second TEA was further designed to reduce the limit down to ~ 78nM using the analyte's oxidizability towards 3,3',5,5'-tetramethylbenzidine molecules. The redox reaction could create positively charged products that could make negatively charged plasmonic gold nanoparticles aggregate through electrostatic interactions to remarkably amplify their TE responses. Both limits were lower than the minimum allowable Ag+ level (~ 460nM) in drinking water issued by the World Health Organization. The satisfactory recovery results for detecting Ag+ ions in river, pond, tap, and drinking water additionally demonstrated good selectivity, accuracy and practicality of the proposed methods for potential point-of-need uses in environmental analysis, public health, water safety, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.