Abstract

A computational method based on nonlinear wake model was established for horizontal axis wind turbines aerodynamic performance prediction. This method makes use of finite difference method to solve the integral differential equation of the model, the induced velocity of wake vortex can be calculated from equations and compared with the induced velocity of wake vortex in linear model. The comparison between the calculated results of wind turbine under axis flow condition, including tip vortex geometry and aerodynamic performance, and available experimental data shows that this method is suitable for wind turbine aerodynamic performance analysis. Finally, a series of numerical calculations were made to investigate the change of wake geometry and aerodynamic performance of the wind turbine when yawing and pitch angle increasing, which provide foundations for aerodynamic optimization design of horizontal axis wind turbines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.