Abstract

A theoretical analysis of the overall mean squared error (MSE) in hybrid video coding is presented for the case of error prone transmission. Our model covers the complete transmission system including the rate-distortion performance of the video encoder, forward error correction, interleaving, and the effect of error concealment and interframe error propagation at the video decoder. The channel model used is a 2-state Markov model describing burst errors on the symbol level. Reed-Solomon codes are used for forward error correction. Extensive simulation results using an H.263 video codec are provided for verification. Using the model, the optimal tradeoff between INTRA and INTER coding as well as the optimal channel code rate can be determined for given channel parameters by minimizing the expected MSE at the decoder. The main focus of this paper is to show the accuracy of the derived analytical model and its applicability to the analysis and optimization of an entire video transmission system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.