Abstract
In this work, we present a marching-on-in-degree (MOD) method in a finite difference time-domain (FDTD) framework for analyzing transient electromagnetic responses in a general dispersive media.The two issues related to the finite difference approximation of the time derivatives and the time-consuming convolution operations are handled analytically using the properties of the associated Laguerre functions. The basic idea here is that we fit the transient nature of the fields, the flux densities, the permittivity and the permeability with a finite sum of orthogonal associated Laguerre functions. Through this novel approach, not only the time variable can be decoupled analytically from the temporal variations but also the final computational form of the equations is transformed from FDTD to a FD formulation through a Galerkin testing. We also propose a second MOD formulation based on the Helmholtz wave equation. Representative numerical examples are presented for transient wave propagation in general Debye, Drude, or a Lorentz dispersive medium. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 54:925–930, 2012; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26696
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.