Abstract

Cellular automata simulation in three dimensions is carried out to simulate microstrutural evolution for nuclei distribution ranging from a periodic arrangement to clusters of nuclei. The effect of clustering in three dimensions is found to be much more difficult to detect using conventional microstructural path analysis than in two dimensions. Microstructural path equations fit simulated data well, even when the nuclei are non-randomly located. However, the parameters obtained by means of this fitting lead to erroneous time dependent velocities. Therefore, measuring a descriptor that is sensitive to non-randomness such as the contiguity is even more important in three than in two dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.