Abstract

Traffic burstiness is known to be undesirable for a router as it increases the router’s queue length and hence the queueing delays of data flows. This poses a security problem in which an attacker intentionally introduces traffic burstiness into routers. We consider a correlation attack, whose fundamental characteristic is to correlate multiple attack flows to generate synchronized small attack bursts, in an attempt to aggregate the bursts into a large burst at a target router.In this paper, we develop an analytical, fluid-based framework that models how the correlation attack disrupts router queues and how it can be mitigated. Using Poisson Counter Stochastic Differential Equations (PCSDEs), our framework captures the dynamics of a router queue for special cases and gives the closed-form average router queue length as a function of the inter-flow correlation. To mitigate the correlation attack, we apply our analytical framework to model different pacing schemes including Markov ON–OFF pacing and rate limiting, which are respectively designed to break down the inter-flow correlation and suppress the peak rates of bursts. We verify that our fluid models conform to packet-level ns2 simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.