Abstract

Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) has demonstrated powerful potential for trace gas detection based on its unique combination of high bandwidth, rapid data acquisition, high sensitivity, and high resolution, which is unavailable with conventional systems. However, previous demonstrations have been limited to proof-of-principle experiments or studies of fundamental laboratory science. Here we present the development of CE-DFCS towards an industrial application -- measuring impurities in arsine, an important process gas used in III-V semiconductor compound manufacturing. A strongly absorbing background gas with an extremely complex, congested, and broadband spectrum renders trace detection exceptionally difficult, but the capabilities of CE-DFCS overcome this challenge and make it possible to identify and quantify multiple spectral lines associated with water impurities. Further, frequency combs allow easy access to new spectral regions via efficient nonlinear optical processes. Here, we demonstrate detection of multiple potential impurities across 1.75-1.95 um (5710-5130 cm-1) with single-channel detection sensitivities of ~1 x 10-7 cm-1 Hz-1/2 in nitrogen and identify water doped in arsine with a sensitivity of ~1 x 10-6 cm-1 Hz-1/2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.