Abstract
• Analytical, experimental and numerical study of heat transfer on microscale. • Time-dependent temperature distribution with periodic excitation. • Penetration depth at which the periodic-thermal excitations are still noticeable. • A round impinging water jet used to cool a surface heated by pulsing laser. • System reaction for time scales and material properties typical for micro-systems. This study investigates time-dependent heat transfer with periodic excitation in micro-scale systems. Specifically, this study sheds light on time and length scales relevant to periodic heat transfer in micro systems. First, a system's substrate is modeled as a slab of finite thickness, in which the heat conduction equation is solved analytically for a periodic temperature boundary condition over the entire range of transient-periodic process. Using the analytical solutions, the system reaction in time is characterized for time scales and material properties typical for micro-systems. A “penetration depth” is defined as a parameter which indicates the maximum distance from the periodically-heated boundary/surface at which the periodic-thermal excitations are still noticeable. Then, as a case study, an experimental device is examined that uses a round, impinging water jet to cool a surface heated by pulsing laser. Finally, a three-dimensional numerical simulation, validated versus experiments, is used to elucidate the system's expected thermal behavior, including spatial and temporal temperature field variation, relevant time scales for measurements, and the spatial distribution of the heat transfer coefficient. It is demonstrated that the analytical findings can serve to characterize the real behavior rather accurately. The findings can assist in the design of systems with unsteady heating, and in future studies aiming at understanding more complex physically-driven transient phenomena, like flow boiling in micro-systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.