Abstract

During the excavation of a tunnel the accumulated wall displacement and the loading of tunnel support is the result of both the tunnel advance (round length and cycle time) and the time-dependent behaviour of the surrounding rock mass. The current approach to analyze the tunnel wall displacement increase is based on the Convergence-Confinement Method (CCM) performed with either analytical (closed form solutions) or the usage of the Longitudinal Displacement Profiles. This approach neglects the influence of time-dependency resulting in delayed deformation that may manifest even minutes or hours after excavation. Failure to consider the added displacements in the preliminary design can result in false selecting the time of installation and the type of support system causing safety issues to the working personnel, leading to cost overruns and project delivery delays. This study focuses on investigating and analyzing the total displacements around a circular tunnel in a visco-elastic medium by performing an isotropic axisymmetric finite difference modelling, proposing a new yet simplified approach that practitioners can use taking into account the effect of time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.