Abstract

We have developed a quantitative substitution interference technique to examine the role of Pro-Rp oxygens in the phosphodiester backbone of RNA, using phosphorothioates as a structural probe. This approach is generally applicable to any reaction involving RNA in which the precursor and reaction products can be separated. We have applied the technique to identity structural requirements in the group I intron from Tetrahymena thermophila for catalysis of hydrolysis at the 3′ splice site; 44 phosphate oxygens are important in 3′ splice site hydrolysis. These include four or five oxygens previously observed to be important in exon ligation. Although phosphate oxygens having a functional significance can be found throughout the intron, the strongest phosphorothioate effects are closely associated with positions in the highly conserved intron core, which are likely to be involved in tertiary interactions, substrate recognition and catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.