Abstract

Interfacial reactions between SnPbAg, SnAg, and SnAgCu solders and Ni/Au surface finish on printed wiring board and especially the redeposition of AuSn4 intermetallic compound have been investigated. The following major results were obtained. The first phase to form during soldering in the (SnPbAg)/Ni/Au and the (SnAg)/Ni/Au systems was Ni3Sn4. During the subsequent solid-state annealing, the redeposition of AuSn4 as (Au,Ni)Sn4 occurred in both systems. This was explained with the help of the concept of local equilibrium and the corresponding ternary phase diagrams. It was concluded that the stabilizing effect of Ni on the (Au,Ni)Sn4 provided the driving force for the redeposition. Contrarily, when the solder alloy contained some Cu, the first intermetallic to form was (Cu,Ni,Au)6Sn5 and no redeposition of AuSn4 was observed. Thus, a very small addition of Cu to the Sn-rich solder alloys changed the behavior of the interconnection system completely. This behavior was explained thermodynamically by using Cu-Ni-Sn and Au-Cu-Sn ternary phase diagrams. The growth kinetics of the interfacial reaction products in the three systems was observed to be somewhat different. The reasons for the observed differences are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.