Abstract
In this study, we analyzed the memristor device typically used as a synapse in neuromorphic architecture and confirmed that the synaptic memristor device can be adopted to perform the machine learning algorithm. The nonlinear characteristics of the memristor complicates its use as the neuromorphic hardware in an artificial neural network (ANN) with a back-propagation algorithm. Using a memristor device with a nonlinear characteristic, we demonstrated that pattern classification can be implemented in ANNs using the Guide training algorithm without back-propagation. Furthermore, the memristor characteristics required to achieve accurate learning results are analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.