Abstract
The load-bearing capacity of pebble aggregates plays a pivotal role in influencing the operational performance of uncontrolled trucks on arrester beds. The complexity of this phenomenon stems from the nonuniformity in the shapes of the pebbles and their stochastic arrangement within the beds, presenting notable challenges for traditional mathematical modelling techniques in precisely evaluating the contact dynamics of these aggregates. This study leverages the discrete element method (DEM) to extensively analyse the arrester bed aggregate of a standard truck escape ramp. The aforementioned mechanism entails the gathering of morphological parameters of irregularly shaped aggregate particles and introduces a novel method for constructing random shapes that adhere to the observed distribution characteristics. A discrete element model, grounded in the physical properties of these aggregates, is formulated. This study focuses on the aggregate’s load-bearing capabilities, scrutinising the mechanical behaviour of the aggregate particles at the macroscopic and microscopic scales. These insights offer substantial scientific contributions and practical implications for assessing the safety of escape ramps and determining essential parameters for the brake bed design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.