Abstract

Fibrosis in livers with hepatitis C virus (HCV) recurrence after liver transplantation (LT) can be rapidly progressive, and the mechanisms underlying this process are poorly understood. In livers with HCV infections in the non-LT setting, there is a significant relationship between the development of structures known as the ductular reaction (DR), hepatic progenitor cells (HPCs), and fibrosis. This study characterizes the DR, HPCs, and fibrosis associated with HCV recurrence after LT. Immunohistochemistry and confocal microscopy were used to characterize the DR, HPC, and fibrosis in liver biopsy specimens. Key findings were confirmed in a separate, independent cohort. The initial characterization cohort had 194 biopsy samples from 105 individuals with HCV recurrence after LT. The immunophenotype, morphology, and location of the DR were consistent with an HPC origin. The DR correlated with intrahepatic fibrosis (rs = 0.529, P < 0.001) and the number of activated hepatic stellate cells (HSCs; rs = 0.446, P < 0.001). There was an early occurrence of hepatocyte replicative arrest as well as increased hepatocyte proliferation that correlated with the DR (rs = 0.295, P < 0.001). Replicative arrest preceded hepatocyte proliferation in early-stage injury. Hepatocyte proliferation decreased with advanced fibrosis; in contrast, the extent of the DR and the number of activated HSCs continued to increase. In the second cohort of 37 individuals, the DR and the number of HPCs similarly correlated with fibrosis and inflammation after LT. In conclusion, this is the first characterization of the DR in HCV-associated liver injury after LT. There was a significant correlation between the DR and the development of progressive fibrosis in HCV recurrence. These results suggest a pivotal role for both the DR and the HPC responses in the aggressive fibrosis seen with HCV recurrence after LT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.