Abstract

In order to maximize the solar radiations falling on a Photo-voltaic (PV) panel and hence, to maximize the solar power generation, an optimum tilt angle of the PV panels for a specific geographic location plays a critical role. This paper exploits the tilt angle and establishes an empirical relation among optimum tilt angle, module temperature and ambient temperature. Moreover, estimating accurate solar photovoltaic power output depends on the correct modelling of the PV module. Temperature and irradiance dependent modelling need statistical support for their behaviour and pattern. This work also examines and institutes the relationship between Ambient temperature and Module temperature throughout the year. Furthermore, in order to determine the impact of irradiance, ambient temperature and module temperature on the solar power generation of a grid-connected solar power plant, this paper evaluates Karl Pearson correlation coefficients for each of the following three pairs (1) generation and irradiance (2) generation and ambient temperature and (3) generation and module temperature, for all the 12 months of a year. The results obtained shall help to better understand, manage, plan, forecast and stabilize the solar power output. Earlier researchers usually used weather data for their study, which are not location-specific therefore, accuracy is questionable. Hence, the data used in this research is recorded from a 3.3 MWp grid-tied ground-installed solar power plant and a 119 ​KW grid-tied rooftop-installed solar power plant, both located at Aligarh Muslim University, Aligarh, India. This paper presents an exhaustive analysis of the two grid-tied solar power plants as there is very little work with actual data of generation, irradiance, temperature and tilt angle, all measured on the spot with high accuracy; results obtained are realistic with a novel approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.