Abstract

Brucella species are important human and animal pathogens. Though, only little is known about mobile genetic elements of these highly pathogenic bacteria. To date, neither plasmids nor temperate phages have been described in brucellae. We analyzed genomic sequences of various reference and type strains and identified a number of putative prophages residing within the Brucella chromosomes. By induction, phage BiPBO1 was isolated from Brucella inopinata. BiPBO1 is a siphovirus that infects several Brucella species including Brucella abortus and Brucella melitensis. Integration of the phage genome occurs adjacent to a tRNA gene in chromosome 1 (chr 1). The bacterial (attB) and phage (attP) attachment sites comprise an identical sequence of 46 bp. This sequence exists in many Brucella and Ochrobactrum species. The BiPBO1 genome is composed of a 46,877 bp double-stranded DNA. Eighty-seven putative gene products were determined, of which 32 could be functionally assigned. Strongest similarities were found to a temperate phage residing in the chromosome of Ochrobactrum anthropi ATCC 49188 and to prophages identified in several families belonging to the order rhizobiales. The data suggest that horizontal gene transfer may occur between Brucella and Ochrobactrum and underpin the close relationship of these environmental and pathogenic bacteria.

Highlights

  • Bacteriophages are viruses which exclusively infect bacteria

  • In contrast to these prophage DNAs existing in several Brucella species, only the three investigated B. melitensis strains contained a putative prophage related to the Trichoplusia ni ascovirus 2c that causes chronic disease in lepidopteran larvae (Wang et al, 2006) Prophage DNA similar to the virulent Roseobacter denitrificans phage RDJLPhi1 (Zhang and Jiao, 2009) was exclusively detected in B. ceti, while B. abortus 544 contains prophage sequences similar to the giant moumouvirus isolated from the protozoa Acanthamoeba polyphaga (Yoosuf et al, 2012)

  • Four prophage DNA regions related to phages or prophages of Marinomonas, Pseudomonas, Rhodobacter, and E. coli were found in the B. inopinata-like strain BO2

Read more

Summary

Introduction

Bacteriophages (phages) are viruses which exclusively infect bacteria. They have been found in most known bacterial taxa and exist in most ecosystems (Wommack and Colwell, 2000; Prestel et al, 2008; Srinivasiah et al, 2008). Phages are the most abundant biological entities on earth They play a major role in horizontal gene transfer by either transduction of bacterial genes, which can be provoked by both temperate and virulent phages, or by lysogenic conversion, a change in the properties of a bacterial cell as a result of its infection with a temperate phage (Fortier and Sekulovic, 2013; Brown-Jaque et al, 2015; Penadés et al, 2015). Phages may encode various enzymes important for pathogenicity such

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.