Abstract

The bubble collapse near a wall will generate strong micro-jet in a liquid environment under ultrasonic field. To explore the effect of the impact of near-wall acoustic bubble collapse micro-jet on an aluminum 1060 sheet, the cavitation threshold formula and micro-jet velocity formula were first proposed. Then the Johnson-Cook rate correlation material constitutive model was considered, and a three-dimensional fluid-solid coupling model of micro-jet impact on a wall was established and analyzed. Finally, to validate the model, ultrasonic cavitation test and inversion analysis based on the theory of spherical indentation test were conducted. The results show that cavitation occurs significantly in the liquid under ultrasonic field, as the applied ultrasonic pressure amplitude is much larger than liquid cavitation threshold. Micro pits appear on the material surface under the impact of micro-jet. Pit depth is determined by both micro-jet velocity and micro-jet diameter, and increases with their increase. Pit diameter is mainly related to the micro-jet diameter and dp/dj≈0.95–1.2, while pit’s diameter-to-depth ratio is mainly negatively correlated with the micro-jet velocity. Wall pressure distribution is mostly symmetric and its maximum appears on the edge of micro-jet impingement. Obviously, the greater the micro-jet velocity is, the greater the wall pressure is. Micro pits formed after the impact of micro-jet on aluminum 1060 surface were assessed by ultrasonic cavitation test. Inversion analysis results indicate that equivalent stress, equivalent strain of the pit and impact strength, and velocity of the micro-jet are closely related with pit’s diameter-to-depth ratio. For the pit’s diameter-to-depth ratio of 16–68, the corresponding micro-jet velocity calculated is 310–370m/s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.