Abstract

A method is presented for controlling the field-directed self-assembly of colloidal magnetic core–shell nanoparticles into three-dimensional (3D) crystalline superstructures with nanoscale feature resolution. This level of resolution is obtained using submicron soft-magnetic template elements to guide the assembly in the presence of a uniform bias field. The use of a bias field combined with template-induced gradient fields is a critical feature of this process as it provides highly localized regions of attractive and repulsive magnetic force that enable nanoscale control of particle placement during assembly. We demonstrate proof-of-concept using a computational model that predicts the dynamics of individual particles during assembly as well as the final assembled structure. Our predictions are consistent with reported experimental observations and demonstrate for the first time that 3D crystalline superstructures can be assembled within milliseconds. Uniform hexagonal close packed (hcp), face centered c...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.