Abstract

Rehabilitation of edentulous atrophic mandibles involves the placement of implants in the anterior segment of the mandible. The primary stability of these implants can be improved using the base of the mandible as complementary anchorage (bicorticalization). This study aimed to analyze the biomechanics of atrophic mandibles rehabilitated with monocortical or bicortical implants. Two three-dimensional virtual models of edentulous mandibles with severe atrophy were prepared. Four monocortical implants were placed in one model (McMM), and four bicortical implants were placed in the other (BcMM). An implant-supported total prosthesis was prepared for each model. Then, a total axial load of 600 N was applied to the posterior teeth, and its effects on the models were analyzed using finite element analysis. The highest compressive stresses were concentrated in the cervical region of the implants in the McMM (-32.562 Mpa); in the BcMM, compressive stresses were distributed in the upper and lower cortex of the mandible, with increased compressive stresses at the distal implants (-63.792 Mpa). Thus, we conclude that axial loading forces are more uniformly distributed in the peri-implant bone when using monocortical implants and concentrated in the apical and cervical regions of the peri-implant bone when using bicortical implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.