Abstract

Afghanistan has a need for increased access to energy to enable development. In this paper we analyze the potential for large-scale grid-connected solar photovoltaic (PV) and wind power plants in two of Afghanistan's most populous provinces (Balkh and Herat) to meet a large fraction of growing electricity demand. The results presented here represent the first quantitative analysis of potential capacity factors and energy yields of power plants in the country using measured wind speed and typical solar radiation data. Variability of resources is also investigated by comparing temporal profiles with those of electricity demand, using residual load duration curves to determine penetration and curtailment levels for various demand scenarios. We show that solar PV and wind power plants in two provinces could achieve penetration levels of 65%–70% without significant curtailment, which in turn would mean less reliance on unpredictable and unstable power purchase agreements with neighboring countries, longer life of limited domestic fossil fuel resources, and lower imports of diesel fuel, thus avoiding rising costs and detrimental environmental impacts. Our results point to an alternative development pathway from that of previous recommendations for conventional thermal power plants, controversial hydroelectric projects, and a significant dependence on imported power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.