Abstract

Marginal zone B cells (MZBs) are a population of B cells that reside in the mouse splenic marginal zones that envelop follicles. To reach the follicles, MZBs must migrate up the shear force of blood flow. We present here a method for analyzing this flow-induced MZB migration in vitro. First, MZBs are isolated from the mouse spleen. Second, MZBs are settled on integrin ligands in flow chamber slides, exposed to shear flow, and imaged under a microscope while migrating. Third, images of the migrating MZBs are processed using the MTrack2 automatic cell tracking plugin for ImageJ, and the resulting cell tracks are quantified using the Ibidi chemotaxis tool. The migration data reveal how fast the cells move, how often they change direction, whether the shear flow vector affects their migration direction, and which integrin ligands are involved. Although we use MZBs, the method can easily be adapted for analyzing migration of any leukocyte that responds to the force of shear flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.