Abstract

The surface acoustic wave (SAW) properties of potassium titanyl phosphate (KTiOPO4, KTP) single crystal were evaluated by numerical methods. The phase velocity, electromechanical coupling coefficient, power flow deflection angle, and temperature coefficient of delay (TCD) were determined for different crystal cuts of KTP. It was shown that SAW has the electromechanical coupling coefficient of 0.59% and the TCD of 62 ppm/°C on the Z-cut and wave propagation direction along the crystal X + 70°-axis. For the Z-cut and wave propagation direction along the X-axis, the pseudo-surface wave (PSAW) is characterized by the coupling coefficient of 0.46% and the TCD value of 57 ppm/°C. The Bleustein-Gulyaev (BG) wave has the TCD value of 35 ppm/°C and 41 ppm/°C on the Y- and X-cuts of KTP, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.