Abstract
A mathematical model for symmetrical sandwich sheet rolling is proposed by using the stream function method and the upper bound theorem to investigate the plastic deformation behavior of sheets at the roll-gap. The velocity fields derived from the newly proposed stream functions can automatically satisfy the volume constancy and the velocity boundary conditions within the roll-gap. Effects of various rolling conditions such as the thickness ratio and flow stress ratio of sheets, total thickness reduction, friction factor between the sheet and roll, etc., upon the thickness ratio of the rolled product, the relative length of the plastic region in each layer, rolling force and rolling power are discussed systematically. Furthermore, experiments on sandwich sheet rolling are also conducted by employing aluminium, mild steel and stainless steel as layers of sandwich sheets. It is found that the theoretical predictions of the thickness ratio of the rolled products and rolling force are in good agreement with the experimental measurements. Through the study, it becomes clear that the proposed analytical method is applicable for simulating the sandwich sheet rolling processes and is able to offer useful knowledge in manufacturing sandwich sheets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.