Abstract

It is generally accepted that drilling with drag bits (Polycrystalline Diamond Compact bits) simultaneously consists of “pure cutting” and “frictional contact” processes. To date, the mechanics of rock cutting have been mostly based on the assumption that these two processes are fully independent as the influence of wear flat inclination angle (β) with respect to the cutter velocity vector (v) on the frictional contact force is often not accounted for. The specific aim of this study is to determine the effect of wear flat inclination angle on the frictional force acting on the wear flat surface of a single blunt cutter over a wide range of depths of cut (d). For this purpose, an extensive and comprehensive set of cutting experiments was performed on two sedimentary rock samples (a limestone and a sandstone) using a state-of-the-art rock cutting equipment and a unique cutter holder. The results show that the normal contact stress (σ) at the wear flat-rock interface (and therefore the normal frictional force acting on the wear flat) is dependent on the depth of cut within the elastoplastic and particularly plastic regimes of frictional contact; however, the contact stress is invariant with depth of cut within the elastic regime. Further investigations indicate that the assumption that the force acting on the wear flat surface of a blunt cutter is independent of the cutting process taking place ahead of the cutter is not valid in particular, for the large values of inclination angles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.