Abstract

A new family of silicon (Si) wafer heterojunction solar cells fabricated by solid phase crystallization of PECVD amorphous silicon emitters by rapid thermal annealing (RTA) has been analyzed in order to understand the dominant recombination mechanisms. Solar cells fabricated with a broad RTA temperature range of 600–1000 °C were characterized through quantum efficiency, illuminated I–V, and capacitance–voltage measurements. Using the experimental data and theoretical considerations, the influence of carrier recombination in the quasi-neutral and space charge zones as well as at the heterojunction interface were studied. It is established that the carrier recombination in the quasi-neutral base region in the p-type Si substrate predominantly limits the device open circuit voltage. The analysis also showed that the interface recombination velocities at the heterojunction were less than 100 cm s−1. It is also qualitatively established that a post-fabrication forming gas anneal reduces the defect density at the hetero-interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.