Abstract

One possible environmental risk related to the utilization of virus-resistant transgenic plants expressing viral sequences is the emergence of new viruses generated by recombination between the viral transgene mRNA and the RNA of an infecting virus. This hypothesis has been tested recently for cucumber mosaic virus (CMV) by comparing the recombinant populations in transgenic and non-transgenic plants under conditions of minimal selection pressure in favour of the recombinants. Equivalent populations were observed in transgenic and non-transgenic plants but, in both, there was a strongly dominant hotspot recombinant which was shown recently to be nonviable alone in planta, suggesting that its predominance could be reduced by applying an increased selection pressure in favour of viable recombinants. Partially disabled I17F-CMV mutants were created by engineering 6 nt deletions in five sites in the RNA3 3'-non-coding region (3'-NCR). One mutant was used to inoculate transgenic tobacco plants expressing the coat protein and 3'-NCR of R-CMV. A total of 22 different recombinant types were identified, of which 12 were, as expected, between the transgene mRNA and the mutated I17F-CMV RNA3, while 10 resulted from recombination between the mutated RNA3 and I17F-CMV RNA1. Twenty recombinants were of the aberrant type, while two, including the dominant one detected previously under conditions of minimal selection pressure, were homologous recombinants. All recombinants detected were very similar to ones observed in nature, suggesting that the deployment of transgenic lines similar to the one studied here would not lead to the emergence of new viruses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.