Abstract

We applied the proper orthogonal decomposition (POD) method to extract reduced-order models to efficiently solve nonlinear electromagnetic problems governed by Maxwell's equations with nonlinear hysteresis at low frequency (10 kHz), called static hysteresis, discretized by a finite-element method. We used a new domain-wall-motion hysteresis model for Power MAgnetic Components (POMACs) in the finite-element potential formulation via an efficient implicit-inverse model calculation. We propose a rational method for the selection of snapshots employed in the POD, used in conjunction with a fixed-point method for the solution of nonlinear POMAC problems. The reduced simulation time and great flexibility of the reduced-order models, as applied to nonlinear POMAC systems, suggest that the procedure can be applied to other electromagnetic problems with nonlinear hysteresis

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.