Abstract

In this work, the power draw and shear profile of a novel in-line rotor-stator mixer were studied experimentally and the laminar flow regime was simulated. The power draw of the rotor-stator mixer was investigated experimentally using viscoplastic shear-thinning fluid and the results of the obtained power consumptions were verified through simulations. The power draw constant and Otto-Metzner coefficient were determined from the result of experimental data and through simulations. A new method is suggested for the determination of the Otto-Metzner coefficient for the Herschel–Bulkley model and the term efficiency is introduced. It was shown that the proposed method can be applied successfully for the prediction of the Otto-Metzner coefficient for the mixing of viscoplastic shear-thinning fluids. The effect of geometry and rotor speed on power consumption and shear rate profile in the investigated mixer is discussed from the results of the simulations. It was found that numerical methods are a convenient tool and can predict the power draw of the in-line rotor-stator mixer successfully.

Highlights

  • Rotor-stator mixers are widely employed for the mixing of various fluids in the polymer, food, and pharmaceutical industries for the preparation of dispersions and homogenization or emulsification processes and can be used in the laminar and turbulent flow regimes and for batch or continuous systems [1,2,3,4,5]

  • The effect of the rotor speed on temperature variation is given in Figure 5 and results indicate that there is an approximate linear proportion between the rotor speed and temperature increment, which is parallel with the power draw curve

  • From the measurement of the pressure, the value of power consumption arising from flow of fluid between inlet and outlet of the barrel (PL ) was found as 46 W maximum which is much lower than PR, and this result confirms the suggestion by Cooke at al. [7]

Read more

Summary

Introduction

Rotor-stator mixers are widely employed for the mixing of various fluids in the polymer, food, and pharmaceutical industries for the preparation of dispersions and homogenization or emulsification processes and can be used in the laminar and turbulent flow regimes and for batch or continuous (in-line) systems [1,2,3,4,5]. The mixing of viscoplastic fluids results in the formation of the well-mixed region (caverns) in the vicinity of the impeller and dead zones next to the wall of the mixer and that leads to poor mixing. For an ideal mixing process, the flow (shear rate) created by impellers should be ensured in the large part of the fluid, and dead zones should be eliminated. Kowalski [15] indicated that the power consumption of an in-line rotor-stator mixer is the sum of the power required to rotate the rotor (PR ), the power of the flow of liquid in the gap (PL ), and mechanical losses (PM ) [7,15,16]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.