Abstract

Predicting the dissolution rate of nonaqueous phase liquids (NAPLs) in groundwater is difficult, as the effects of variable pore and NAPL blob geometry are poorly understood. To elucidate these effects, fluorescence microscopy and digital image analysis were used to quantify the size and location of variably distributed NAPL blobs during dissolution in homogeneous and heterogeneous pore networks etched into silicon wafers. Results show that the dissolution rate constant (expressed as the Sherwood number, Sh) is relatively constant regardless of pore and NAPL blob geometry when the average mass transfer length scale remains constant during dissolution. Results also show that Sh increases with Peclet (Pe) between 2 and 26 and then levels off. The limiting value of Sh reached depends on the average diffusion length scale; this length scale was directly calculated and found to vary depending on the pore and NAPL blob geometry. For example, the average diffusion length scale decreases (and Sh increases) as the pore throat width to grain diameter increases. Last, results show that the volumetric NAPL content (θn) is linearly related to the specific NAPL‐water interfacial area (ait) over much of the dissolution process. However, this relationship depends on the pore and blob size distribution. For example, when multipore blobs control dissolution, the relationship between these parameters will change as smaller blobs dominate dissolution at low θn. These results are important because existing mass transfer correlations do not account for limiting values of Sh that can be obtained at high Pe for the effect of blob or pore geometry on the average diffusion length scale (and therefore on Sh) or for the effect of pore geometry and transient blob size distribution on the relationship between ait and θn.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.