Abstract

Space manipulator is an important tool for spacecraft to complete a variety of tasks in space. Nowadays the harmonic drive is widely used as the reducer in the space manipulator, which may influence the dynamical properties of flexible space manipulator. The analysis of dynamic reliability and parameter sensitivity of space manipulator with harmonic drive is of significant importance for space manipulator designers in the early stage of design. The trajectory precision of the manipulator determines whether the mechanism performs normally. However, it is difficult to use the existing methods to resolve reliability apportionment issues because of the data insufficiency and the uncertainty of the relations among the components in the mechanical system. This paper establishes the dynamical models of space manipulator considering the harmonic hysteresis phenomenon derived from the harmonic reducer. A new method is proposed to analyze the dynamic reliability and parameter sensitivity of space manipulator with harmonic drive. The proposed method extends the previous response surface method (RSM) and focuses on the characteristics of the output dynamical property of the space manipulator. With the result of parameter sensitivity analysis, we can prolong the fine arm or shorten the main arm to improve the motion precision reliability of space manipulator. Therefore, our revised response surface method (RRSM) is suitable for reliability apportionment of the space manipulator when the design information has not been clearly identified, particularly in early design phrase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.