Abstract

Nuclear couplings for the Se-Se bonds, 1 J(Se, Se), are analyzed on the basis of the molecular orbital (MO) theory. The values are calculated by employing the triple ζ basis sets of the Slater type at the DFT level. 1 J(Se, Se) are calculated modeled by MeSeSeMe (1a), which shows the typical torsional angular dependence on ϕ(CMeSeSeCMe). The dependence explains well the observed 1 J obsd (Se, Se) of small values (≤ 64 Hz) for RSeSeR′ (1) (simple derivatives of 1a) and large values (330–380 Hz) observed for 4-substituted naphto[1,8-c, d]-1,2-diselenoles (2) which correspond to symperiplanar diselenides. 1 J (Se, Se: 2) becomes larger as the electron density on Se increases. The paramagnetic spin-orbit terms contribute predominantly. The contributions are evaluated separately from each MO (ψ i) and each ψ i → ψ a transition, where ψ i and ψ a are occupied and unoccupied MO's, respectively. The separate evaluation enables us to recognize and visualize the origin and the mechanism of the couplings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.