Abstract

Nonmodal phonation occurs when glottal pulses exhibit nonuniform pulse-to-pulse characteristics such as irregular spacings, amplitudes, and/or shapes. The analysis of regions of such nonmodality has application to automatic speech, speaker, language, and dialect recognition. In this paper, we examine the usefulness of a technique called minimum-entropy deconvolution, or MED [1], for the analysis of pulse events in nonmodal speech. Our study presents evidence for both natural and synthetic speech that MED decomposes nonmodal phonation into a series of sharp pulses and a set of mixedphase impulse responses. We show that the estimated impulse responses are quantitatively similar to those in our synthesis model. A hybrid method incorporating aspects of both MED and linear prediction is also introduced. We show preliminary evidence that the hybrid method has benefit over MED alone for composite impulse-response estimation by being more robust to short-time windowing effects as well as a speech aspiration noise component. Index Terms: inverse filtering, nonmodal speech, glottal pulse, minimum entropy

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.