Abstract
We analyze the channel properties of a nonline-of-sight (NLOS) ceiling-to-device and device-to-device visible light communication systems by considering various receivers' orientation and variable fields of view (FOVs). Analyses based on the recursive indoor channel model show that for a particular transmitter configuration, the pure NLOS path can offer higher 3-dB channel bandwidth (up to 14 MHz) compared with the link with LOS and NLOS components. We also show how the receiver rotation (orientation) influences the probability of receiving signals via the NLOS path compared with the LOS and NLOS paths. Moreover, based on the experimental campaign, we demonstrate that shadowing observed at the receiver due to people’s movement results in decreased received power level (up to 1.8 dB), thus resulting in reshaping of the probability density function of received power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.