Abstract

The delay Cox–Ingersoll–Ross (CIR) model is an important model in the financial markets. It has been proved that the solution of this model is non-negative and its pth moments are bounded. However, there is no explicit solution for this model. So, proposing appropriate numerical method for solving this model which preserves non-negativity and boundedness of the model's solution is very important. In this paper, we concentrate on the balanced implicit method (BIM) for this model and show that with choosing suitable control functions the BIM provides numerical solution that preserves non-negativity of solution of the model. Moreover, we show the pth moment boundedness of the numerical solution of the method and prove the convergence of the proposed numerical method. Finally, we present some numerical examples to confirm the theoretical results, and also application of BIM to compute some financial quantities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.