Abstract
In this article, numerical solution for the Rosenau-RLW equation in 2D is considered and a conservative Crank–Nicolson finite difference scheme is proposed. Existence of the numerical solutions for the difference scheme has been shown by Browder fixed point theorem. A priori bound and uniqueness as well as conservation of discrete mass and discrete energy for the finite difference solutions are discussed. Unconditional stability and a second-order accuracy on both space and time of the difference scheme are proved. Numerical experiments are given to support our theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.