Abstract
AbstractCardiolipin is an important phospholipid present in the inner membrane of mitochondria. It plays a critical role in adenosine triphosphate (ATP) synthesis mediated by oxidative phosphorylation. Exposure of HepG2 cells to carbonyl cyanide 4‐(trifluoromethoxy) phenylhydrazone (FCCP) caused the inhibition of ATP synthesis and the depolarization of mitochondria. Capillary electrophoresis with laser‐induced fluorescence (CE‐LIF) analysis of fluorescent mitochondrion‐selective probe 10‐N‐nonyl acridine orange (NAO) labeled mitochondria was employed to in situ estimate the cardiolipin levels under FCCP‐induced de‐energization of mitochondria. NAO, stoichiometriclly bound to cardiolipin at a 1:1 or 2:1 molar ratio (NAO/cardiolipin), emitted green and red fluorescence, respectively. Green fluorescence was chosen for cardiolipin content analysis because it was more intense than red fluorescence. A significant decrease in the cardiolipin content, up to 11% of the control, was evident when the ATP content and mitochondrial membrane potential (MMP) correspondingly decreased. These related findings suggested that CE‐LIF may provide a sensitive strategy to determine cardiolipin content in response to exposure to chemical uncouplers. This reinforces the hypothesis that alterations in ATP synthesis and MMP have a close association with cardiolipin content, which correlated tightly with mitochondrial membrane assembly and activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.