Abstract

A model for calculation of the angle of misorientation between the reflecting crystallographic planes and the plane of the semiconductor surface of a sample by means of high-resolution X-ray diffractometry has been developed. The model can minimize mechanical instrument errors, including the positioning and moving inaccuracies, and determine the optimum parameters of sample position with respect to the incident radiation for correct investigations of the perfection of the crystal structure. The principle of conduction of the experiment and the mathematical model used for processing of the obtained data are described. To find macrodefects of the crystal structure, in particular, blocks, the map of the distribution of parameters of the the rocking curve of the entire sample was obtained using the developed model. This allowed determination of the blocks boundaries and their mutual orientation in the directions longitudinal relative to the wafer. The model was tested on a wafer cut from a bulk indium antimonide single crystal grown by the Czochralski method and subjected to chemical-dynamic and chemical-mechanical polishing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.