Abstract

This study selected 27 soil samples from four representative horizontally distributed onshore oilfields in China to explore the diversity of soil microbial communities and their carbon fixation capacity, with a focus on the potential interaction between pollution and carbon fixation under oil pollution stress. The analysis of the soil physicochemical properties and microbial community structures from these oilfield samples confirmed a clear biogeographic isolation effect, indicating spatial heterogeneity in the microbial communities. Additionally, the key factors influencing microbial community composition differed across regions. The dominant bacterial phyla of soil microorganisms under soil pollution stress were Proteobacteria, Actinobacteriota, Chloroflexi, Acidobacteriota, Firmicutes, Bacteroidota, and Gemmatimonadota. A correlation network analysis identified Immundisolibacter, Acinetobacter, Blastococcus, Truepera, and Kocuria as key players in the microbial network, with most showing positive correlations. The results of the KEGG database functional annotation showed that degradation and carbon fixation metabolic pathways coexist in soil samples and maintain a balanced relative abundance. These metabolic pathways highlight the functional diversity of microorganisms. Among them, prokaryotic and eukaryotic carbon fixation pathways, along with benzoate degradation pathways, are predominant. These findings establish a theoretical basis for further exploration of the synergistic mechanisms underlying pollution reduction and carbon sequestration by microorganisms in petroleum-contaminated soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.