Abstract
Knowledge of the individual lipid species that are associated with ethanol tolerance in Saccharomyces cerevisiae is necessary to understand potential mechanisms of how this organism uses these molecules to mitigate the toxic effects of ethanol. Three industrial yeast strains with varying degrees of ethanol tolerance were examined utilizing normal phase high-performance liquid chromatography and atmospheric pressure ionization-ion-trap mass spectrometry methods to quantitatively determine phospholipid and ergosterol levels at numerous fermentation time points. Both high and low Brix fermentations were performed to assess the sugar utilization capabilities of the strains. The results indicated that the strain with the most robust fermentation characteristics had the highest phosphatidylinositol levels and lowest phosphatidylcholine levels. Examination of the phospholipid structural data from tandem MS experiments indicated that the levels of several phospholipid species were unique to the slowest fermenting strain. The relation of ergosterol and other phospholipids to ethanol tolerance is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.