Abstract
This study focuses on the strain rate effect on the mechanical properties and damage evolution of basalt fiber reinforced composites subjected to low-velocity impact. A constitutive model is developed to accurately analyze the failure behavior of BFRP laminates. The strain-rate-dependent (SRD) model puts emphasis on a modified stress-strain relationship described by dynamic increase factor (DIF) to update mechanical properties timely during the impact loading and the damage evolution simulation is performed with the finite element code of ABAQUS software. The results shown in the LVI simulation confirmed the validity of the SRD model in comparison with the conclusions of experiments. Furthermore, detailed comparisons are discussed between the strain rate dependent (SRD) model and the strain rate independent (SRI) model under various simulations of different impact energy, thickness, and ply angles of laminates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Strain Analysis for Engineering Design
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.