Abstract

We show how linear matrix inequalities (LMI) can be used to perform local stability and performance analysis of linear systems with saturating elements. This leads to less conservative information on stability regions, disturbance rejection, and L/sub 2/-gain than standard global stability and performance analysis. The circle and Popov criteria are used to obtain Lyapunov functions whose sublevel sets provide regions of guaranteed stability and performance within a restricted state space region. Our LMI formulation leads directly to simple convex optimization problems that can be solved efficiently as semidefinite programs. The results cover both single and multiple saturation elements and can be immediately extended to discrete time systems. An obvious application of these techniques is in the analysis of control systems with saturating control inputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.