Abstract

The shape of the light curve peak of radioactive--powered core--collapse "stripped--envelope" supernovae constrains the ejecta mass, nickel mass, and kinetic energy by the brightness and diffusion time for a given opacity and observed expansion velocity. Late--time light curves give constraints on the ejecta mass and energy, given the gamma--ray opacity. Previous work has shown that the principal light curve peaks for SN~IIb with small amounts of hydrogen and for hydrogen/helium--deficient SN~Ib/c are often rather similar near maximum light, suggesting similar ejecta masses and kinetic energies, but that late--time light curves show a wide dispersion, suggesting a dispersion in ejecta masses and kinetic energies. It was also shown that SN~IIb and SN~Ib/c can have very similar late--time light curves, but different ejecta velocities demanding significantly different ejecta masses and kinetic energies. We revisit these topics by collecting and analyzing well--sampled single--band and quasi--bolometric light curves from the literature. We find that the late--time light curves of stripped--envelope core--collapse supernovae are heterogeneous. We also show that the observed properties, the photospheric velocity at peak, the rise time, and the late decay time, can be used to determine the mean opacity appropriate to the peak. The opacity determined in this way is considerably smaller than common estimates. We discuss how the small effective opacity may result from recombination and asymmetries in the ejecta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.