Abstract

Centrin, an EF-hand calcium-binding protein with high homology to calmodulin (CaM), is an essential component of microtubule-organizing center (MTOC). Lanthanide (Ln) ions can improve the stability, increase the amount and enhance the orderliness of microtubules, which are components of cytoskeleton. In order to investigate the structural basis of Ln ions on enhancing orderliness of microtubules, we characterized the binding properties of Ln ions with the isolated C-terminal domain of the Euplotes centrin (C-EoCen). Results suggested that Ln ions may occupy the canonical Ca(2+) binding sites on C-EoCen with middle affinity. Near- and far-UV CD spectra of C-EoCen displayed pronounced differences before and after additing Ln ions. The asymmetry of microenvironments of Phe on C-EoCen was changed. Using 2-p-toluidinylnaphthalene-6- sulfonate (TNS) as probe, Ln ions induced C-EoCen to undergo conformational changes from closed state to open state, resulting in exposing hydrophobic patches to external environments. Ln ions have more obvious effect on the conformation of centrin than Ca(2+). The differences found in the interactions of centrin binding with Ln ions/Ca(2+) maybe provide some insights for structural basis of centrin functions in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.