Abstract

Extensive plot studies across Amazonia have demonstrated that there are large regional gradients in forest productivity and that the dynamics of the forests seem to have accelerated substantially in recent decades, with ensuing impacts on forest structure. Most of these sites are, however, one hectare plots nested within a heterogeneous landscape, and a clear need exists to understand the landscape and regional context of these studies. Remote sensing offers the potential to scale up from plot to higher landscape levels but it has proven complex to evaluate forest structure, and therefore biomass patterns in tropical areas, due to saturation, signal noises, and unclear relationships between reflectance values and structural properties, both for optical and radar systems. In this study, we explore the potential of a textural approach to detect landscape and regional variations in the structure of tropical forest canopies, as viewed from high resolution IKONOS satellite imagery. We used lacunarity analysis and a derived variable, the index of translational homogeneity (ITH), as a tool to search for structural and dynamic forest properties within and among different Amazonian landscapes. The main goals of this research were: (1) to examine the sensitivity and robustness of ITH analysis to details of the analysis procedure; (2) to explore the intra- and inter-regional textural properties of a variety of tropical forest canopies [Caxiuanã, Manaus, Sinop, Santarem (Brazil), and Tambopata (Peru)], and (3) to relate textural properties derived from lacunarity to structural properties of the forest canopy, mainly crown size. Our results show how ITH and lacunarity analyses offer insights into the spatial distribution of structural properties of forest canopies, easily differentiating between terra firme forests and swamp forests. The studied forest canopies are self-similar on length-scales of 5–11 m, and show translational invariance on scales above 20 m (central and western Amazonia) and 30 m (eastern Amazonia) For a restricted range of solar elevation angles, the ITH appears to be determined mainly by the mean size of tree crowns, and by the fraction of large (shadow-generating) trees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.