Abstract
AbstractAn exoplanet transiting in front of the disk of its parent star may hide a dark starspot causing a detectable change in the light curve, that allows to infer physical characteristics of the spot such as size and intensity. We have analysed the Kepler Space Telescope observations of the star Kepler-71 in order to search for variabilities in 28 transit light curves. Kepler-71 is a star with 0.923 M⊙ and 0.816 R⊙ orbited by the hot Jupiter planet Kepler-71b with radius of 1.0452 RJ. The physical parameters of the starspots are determined by fitting the data with a model that simulates planetary transits and enables the inclusion of spots on the stellar surface with different sizes, intensities, and positions. The results show that Kepler-71 is a very active star, with several spot detections, with a mean value of 6 spots per transit with size 0.6 RP and 0.5 IC, as a function of stellar intensity at disk center (maximum value).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Astronomical Union
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.