Abstract
As the network primarily based applications are growing quickly, the network security mechanisms need a lot of attention to enhance speed and preciseness. The ever evolving new intrusion types cause a significant threat to network security. Though varied network security tools are developed, however the quick growth of intrusive activities continues to be a significant issue. Intrusion detection systems (IDSs) are wont to detect intrusive activities on the network. Analysis showed that application of machine learning techniques in intrusion detection might reach high detection rate. Machine learning and classification algorithms facilitate to design “Intrusion Detection Models” which might classify the network traffic into intrusive or traditional traffic. This paper discusses some usually used machine learning techniques in Intrusion Detection System and conjointly reviews a number of the prevailing machine learning IDS proposed by researchers at different times. in this paper an experimental analysis is performed to demonstrate the performance analysis of some existing techniques in order that they will be used further in developing Hybrid Classifier for real data packets classification. The given result analysis shows that KNN, RF and SVM performs best for NSL-KDD dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.