Abstract

The purpose of this study is to analyze simultaneous skin permeation and metabolism of 22-oxacalcitriol (OCT) having several metabolites in skin by observing skin permeation of only unchanged OCT through excised rat skin. A diffusion model including metabolic processes was employed to express simultaneous skin permeation and metabolism of OCT. In vitro permeation experiments of OCT from Oxarol ointment through full-thickness and stripped rat skin were carried out using Franz-type diffusion cells. Time courses of unchanged OCT amounts in ointment, skin, and receptor fluid were determined and fitted to diffusion equations to obtain permeation parameters and a metabolic rate. Fitting curves of the skin permeation profile obtained by the model were sufficiently close to observed data of unchanged OCT amounts in ointment, skin, and receptor fluid. The following parameters were obtained: metabolic rate of 1.37 x 10(-1) h(-1), and diffusion constants of OCT in stratum corneum (SC) (D(SC)) and viable epidermis and dermis (VED) (D(VED)) of 1.50 x 10(-7) and 2.96 x 10(-4) cm2/h, respectively. The partition coefficient of OCT for SC/ointment (K(SC/D)) was 7 times greater than that of VED/ointment (K(VED/D)). The present analysis made it possible to calculate skin permeation parameters (partitioning, diffusivity, and metabolic rate) of OCT without requiring metabolic information, e.g., quantification of metabolites or identification of metabolic pathways. This would be widely applicable for drugs that are not suitable for conventional methods due to complicated metabolic pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.