Abstract
In this paper, heat transfer of a steady, two-dimensional, incompressible Cu-water nanofluid flow over a moving wedge in the presence of thermal radiation effect are investigated. Gyarmati's variational principle developed on the thermodynamic theory of irreversible processes is employed to solve the problem numerically. The governing boundary layer equations are approximated as simple polynomial functions, and the functional of the variational principle is constructed. The Euler-Langrange equations are reduced to simple polynomial equations in terms of boundary layer thicknesses. The velocity and temperature profiles as well as skin friction and heat transfer are analyzed for various parameters. The obtained numerical solutions are compared with the previously published results and are found to be in good agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.