Abstract

In this study, we analyse both ground gravity and aeromagnetic data in order to delineate structural trends, fault systems and deduce sedimentary thicknesses within the Ajdabiya Trough in Libya’s northeast. A high-pass filter and a reduced-to-the-pole (RTP) transformation are applied to the gravity and aeromagnetic data respectively. Different filters are used to enhance the structural signatures and fault trends within the study area. The Werner deconvolution and source parameter imaging (SPI) techniques are applied to the RTP magnetic data for source depth estimation. Four well-data within the area are used as constraints in the two-dimensional forward modelling process. The results show that the Ajdabiya Trough is characterised by gravity anomaly highs and magnetic anomaly lows. The analysis of gravity data shows predominant Northeast–Southwest structural trends, whereas the analysis of magnetic data shows predominant North–South magnetic lineaments within the Ajdabiya Trough. The Euler deconvolution depth estimates of faults depths range between 1500 and 9500 m. The SPI estimates of the magnetic basement range between 2500 and 11,500 m beneath the study area (deepest beneath the Ajdabiya Trough). Constrained by the well-data, six major layers characterize the four profiles that are taken within the area. One of the profiles shows a high-density intrusion (about 4 km from the surface) within the sedimentary sequence. The intrusion may be the result of the rifting Sirt Basin which caused a weakening of the crust to allow for mantle intrusion.

Highlights

  • The Sirt Basin has been described as a triple-junction rift along the northern margin of the African crust in northcentral Libya [1]

  • The Ajdabiya Trough is characterized by gravity anomaly highs (GAH) and magnetic anomaly lows (MAL) (Fig. 4a, b) respectively

  • The highest and lowest gravity anomaly values are around the Ajdabiya and the Hugfa Troughs respectively

Read more

Summary

Introduction

The Sirt Basin has been described as a triple-junction rift along the northern margin of the African crust in northcentral Libya [1]. The structural features of the basin are largely due to tectonic interactions between the African and the Eurasian plates. The Ajdabiya Trough located northeast of the Sirt Basin is the youngest sedimentary basin in Libya. According to [3], about 8500 km due South of the Ajdabiya Trough is underexplored. This region is among the six underexplored basin centres with petroleum potential in Libya [3,4,5]. The structure and stratigraphy of central Ajdabiya Trough is poorly known because

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.